Start writing here...
Hereβs a clear, beginner-friendly step-by-step guide to Exploratory Data Analysis (EDA) β a crucial part of any data science or machine learning project.
π§ What is Exploratory Data Analysis (EDA)?
EDA is the process of analyzing and summarizing a dataset to:
- Understand its structure
- Identify patterns, trends, and outliers
- Detect data quality issues
- Guide feature selection and modeling
Think of it as "interviewing your data" before making any predictions.
π§ͺ EDA Step-by-Step Guide
β Step 1: Understand the Dataset
Goal: Know what the data represents.
- Read the documentation or column descriptions
-
Identify:
- Target variable (if any)
- Types of features (numeric, categorical, datetime)
- Unit of observation (e.g., one row = one customer)
π Use: .info(), .shape, .head()
π§Ή Step 2: Clean the Data
Goal: Get the dataset ready for analysis.
- Handle missing values
- Remove duplicates
- Correct data types
- Standardize text formatting
π Use:
df.isnull().sum() df.duplicated().sum() df.dtypes
π Step 3: Summary Statistics
Goal: Quantify the basics of your data.
- Mean, median, standard deviation
- Minimum/maximum
- Unique values for categorical data
π Use: .describe(), .value_counts()
π Step 4: Univariate Analysis
Goal: Examine each feature individually.
For Numeric Columns:
- Histogram: distribution
- Boxplot: detect outliers
For Categorical Columns:
- Bar chart: frequency of categories
π Use: sns.histplot(), sns.boxplot(), df['col'].value_counts()
π Step 5: Bivariate / Multivariate Analysis
Goal: Explore relationships between variables.
Numeric vs Numeric:
- Scatter plots
- Correlation matrix
Categorical vs Numeric:
- Box plots or violin plots
Categorical vs Categorical:
- Crosstab or stacked bar plots
π Use: sns.heatmap(), sns.scatterplot(), pd.crosstab()
π© Step 6: Identify Outliers & Anomalies
Goal: Find extreme or suspicious values that may skew analysis.
- Visual tools: box plots, z-scores
- Decision: remove, cap, or keep based on context
π§ Step 7: Feature Engineering (Optional)
Goal: Create new variables to enhance modeling.
- Binning numerical data
- Encoding categories (label, one-hot)
- Date-time features (e.g., extract month, weekday)
- Log transformations
π Step 8: Document Insights
Goal: Record everything before moving to modeling.
- Save charts and summaries
- Highlight patterns or business-relevant insights
- Write clear explanations (Markdown, Notebooks)
π Tip: Create an EDA report using tools like pandas-profiling or Sweetviz
π οΈ Tools Commonly Used in EDA
Task | Tools/Libraries |
---|---|
Data Manipulation | Pandas, NumPy |
Visualization | Matplotlib, Seaborn, Plotly |
Quick Reports | pandas-profiling, Sweetviz |
Dashboarding | Tableau, Power BI, Streamlit |
π¦ Example Python EDA Starter Code
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Load data df = pd.read_csv('data.csv') # Basic info print(df.info()) print(df.describe()) # Check missing values print(df.isnull().sum()) # Histogram for numeric column sns.histplot(df['age']) plt.show() # Boxplot for outliers sns.boxplot(x=df['income']) plt.show() # Correlation heatmap sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.show()
Would you like a downloadable EDA checklist, sample dataset, or Jupyter Notebook template to practice with?