Skip to Content

Exploratory Data Analysis (EDA): A Step-by-Step Guide

Start writing here...

Here’s a clear, beginner-friendly step-by-step guide to Exploratory Data Analysis (EDA) β€” a crucial part of any data science or machine learning project.

🧭 What is Exploratory Data Analysis (EDA)?

EDA is the process of analyzing and summarizing a dataset to:

  • Understand its structure
  • Identify patterns, trends, and outliers
  • Detect data quality issues
  • Guide feature selection and modeling

Think of it as "interviewing your data" before making any predictions.

πŸ§ͺ EDA Step-by-Step Guide

βœ… Step 1: Understand the Dataset

Goal: Know what the data represents.

  • Read the documentation or column descriptions
  • Identify:
    • Target variable (if any)
    • Types of features (numeric, categorical, datetime)
    • Unit of observation (e.g., one row = one customer)

πŸ“˜ Use: .info(), .shape, .head()

🧹 Step 2: Clean the Data

Goal: Get the dataset ready for analysis.

  • Handle missing values
  • Remove duplicates
  • Correct data types
  • Standardize text formatting

πŸ“˜ Use:

df.isnull().sum()  
df.duplicated().sum()  
df.dtypes  

πŸ“Š Step 3: Summary Statistics

Goal: Quantify the basics of your data.

  • Mean, median, standard deviation
  • Minimum/maximum
  • Unique values for categorical data

πŸ“˜ Use: .describe(), .value_counts()

πŸ“‰ Step 4: Univariate Analysis

Goal: Examine each feature individually.

For Numeric Columns:

  • Histogram: distribution
  • Boxplot: detect outliers

For Categorical Columns:

  • Bar chart: frequency of categories

πŸ“˜ Use: sns.histplot(), sns.boxplot(), df['col'].value_counts()

πŸ” Step 5: Bivariate / Multivariate Analysis

Goal: Explore relationships between variables.

Numeric vs Numeric:

  • Scatter plots
  • Correlation matrix

Categorical vs Numeric:

  • Box plots or violin plots

Categorical vs Categorical:

  • Crosstab or stacked bar plots

πŸ“˜ Use: sns.heatmap(), sns.scatterplot(), pd.crosstab()

🚩 Step 6: Identify Outliers & Anomalies

Goal: Find extreme or suspicious values that may skew analysis.

  • Visual tools: box plots, z-scores
  • Decision: remove, cap, or keep based on context

🧠 Step 7: Feature Engineering (Optional)

Goal: Create new variables to enhance modeling.

  • Binning numerical data
  • Encoding categories (label, one-hot)
  • Date-time features (e.g., extract month, weekday)
  • Log transformations

πŸ“Ž Step 8: Document Insights

Goal: Record everything before moving to modeling.

  • Save charts and summaries
  • Highlight patterns or business-relevant insights
  • Write clear explanations (Markdown, Notebooks)

πŸ“˜ Tip: Create an EDA report using tools like pandas-profiling or Sweetviz

πŸ› οΈ Tools Commonly Used in EDA

Task Tools/Libraries
Data Manipulation Pandas, NumPy
Visualization Matplotlib, Seaborn, Plotly
Quick Reports pandas-profiling, Sweetviz
Dashboarding Tableau, Power BI, Streamlit

πŸ“¦ Example Python EDA Starter Code

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load data
df = pd.read_csv('data.csv')

# Basic info
print(df.info())
print(df.describe())

# Check missing values
print(df.isnull().sum())

# Histogram for numeric column
sns.histplot(df['age'])
plt.show()

# Boxplot for outliers
sns.boxplot(x=df['income'])
plt.show()

# Correlation heatmap
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()

Would you like a downloadable EDA checklist, sample dataset, or Jupyter Notebook template to practice with?